A Diagrammatic Temperley-Lieb Categorification
نویسنده
چکیده
The monoidal category of Soergel bimodules categorifies the Hecke algebra of a finite Weyl group. In the case of the symmetric group, morphisms in this category can be drawn as graphs in the plane. We define a quotient category, also given in terms of planar graphs, which categorifies the Temperley-Lieb algebra. Certain ideals appearing in this quotient are related both to the 1skeleton of the Coxeter complex and to the topology of 2D cobordisms. We demonstrate how further subquotients of this category will categorify the irreducible modules of the Temperley-Lieb algebra.
منابع مشابه
Teleportation, Braid Group and Temperley–Lieb Algebra
In the paper, we describe the teleportation from the viewpoints of the braid group and Temperley–Lieb algebra. We propose the virtual braid teleportation which exploits the teleportation swapping and identifies unitary braid representations with universal quantum gates, and further suggest the braid teleportation which is explained in terms of the crossed measurement and the state model of knot...
متن کامل. R A ] 2 8 A ug 2 00 4 DESCRIPTION OF THE CENTER OF THE AFFINE TEMPERLEY - LIEB ALGEBRA OF TYPE Ã
Construction of the diagrammatic version of the affine Temperley-Lieb algebra of type A N as a subring of matrices over the Laurent polynomials is given. We move towards geometrical understanding of cellular structure of the Temperley-Lieb algebra. We represent its center as a coordinate ring of the certain affine algebraic variety and describe this variety constructing its desingularization.
متن کاملAlgebraic Structures Underlying Quantum Information Protocols
In this paper, we describe the teleportation from the viewpoints of the braid group and Temperley–Lieb algebra. We propose the virtual braid teleportation which exploits the teleportation swapping and identifies unitary braid representations with universal quantum gates, and suggest the braid teleportation which is explained in terms of the crossed measurement and the state model of knot theory...
متن کاملA categorification of the Temperley-Lieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors
2.1. U̇(sl2) and its representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 2.1.1. Algebra U̇(sl2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 2.1.2. Representations of U̇(sl2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 2.2. Temperley-Lieb algebra . . . . . . . . ...
متن کاملCategorification of the Jones-wenzl Projectors
The Jones-Wenzl projectors pn play a central role in quantum topology, underlying the construction of SU(2) topological quantum field theories and quantum spin networks. We construct chain complexes Pn , whose graded Euler characteristic is the “classical” projector pn in the Temperley-Lieb algebra. We show that the Pn are idempotents and uniquely defined up to homotopy. Our results fit within ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010